63 research outputs found

    From Security Enforcement to Supervisory Control in Discrete Event Systems: Qualitative and Quantitative Analyses

    Full text link
    Cyber-physical systems are technological systems that involve physical components that are monitored and controlled by multiple computational units that exchange information through a communication network. Examples of cyber-physical systems arise in transportation, power, smart manufacturing, and other classes of systems that have a large degree of automation. Analysis and control of cyber-physical systems is an active area of research. The increasing demands for safety, security and performance improvement of cyber-physical systems put stringent constraints on their design and necessitate the use of formal model-based methods to synthesize control strategies that provably enforce required properties. This dissertation focuses on the higher level control logic in cyber-physical systems using the framework of discrete event systems. It tackles two classes of problems for discrete event systems. The first class of problems is related to system security. This problem is formulated in terms of the information flow property of opacity. In this part of the dissertation, an interface-based approach called insertion/edit function is developed to enforce opacity under the potential inference of malicious intruders that may or may not know the implementation of the insertion/edit function. The focus is the synthesis of insertion/edit functions that solve the opacity enforcement problem in the framework of qualitative and quantitative games on finite graphs. The second problem treated in the dissertation is that of performance optimization in the context of supervisory control under partial observation. This problem is transformed to a two-player quantitative game and an information structure where the game is played is constructed. A novel approach to synthesize supervisors by solving the game is developed. The main contributions of this dissertation are grouped into the following five categories. (i) The transformation of the formulated opacity enforcement and supervisory control problems to games on finite graphs provides a systematic way of performing worst case analysis in design of discrete event systems. (ii) These games have state spaces that are as compact as possible using the notion of information states in each corresponding problem. (iii) A formal model-based approach is employed in the entire dissertation, which results in provably correct solutions. (iv) The approaches developed in this dissertation reveal the interconnection between control theory and formal methods. (v) The results in this dissertation are applicable to many types of cyber-physical systems with security-critical and performance-aware requirements.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/150002/1/jiyiding_1.pd

    Compositional and Abstraction-Based Approach for Synthesis of Edit Functions for Opacity Enforcement

    Full text link
    This paper develops a novel compositional and abstraction-based approach to synthesize edit functions for opacity enforcement in modular discrete event systems. Edit functions alter the output of the system by erasing or inserting events in order to obfuscate the outside intruder, whose goal is to infer the secrets of the system from its observation. We synthesize edit functions to solve the opacity enforcement problem in a modular setting, which significantly reduces the computational complexity compared with the monolithic approach. Two abstraction methods called opaque observation equivalence and opaque bisimulation are first employed to abstract the individual components of the modular system and their observers. Subsequently, we propose a method to transform the synthesis of edit functions to the calculation of modular supremal nonblocking supervisors. We show that the edit functions synthesized in this manner correctly solve the opacity enforcement problem

    Enhanced Crystallinity of Triple-Cation Perovskite Film via Doping NH\u3csub\u3e4\u3c/sub\u3eSCN

    Get PDF
    The trap-state density in perovskite films largely determines the photovoltaic performance of perovskite solar cells (PSCs). Increasing the crystal grain size in perovskite films is an effective method to reduce the trap-state density. Here, we have added NH4SCN into perovskite precursor solution to obtain perovskite films with an increased crystal grain size. The perovskite with increased crystal grain size shows a much lower trap-state density compared with reference perovskite films, resulting in an improved photovoltaic performance in PSCs. The champion photovoltaic device has achieved a power conversion efficiency of 19.36%. The proposed method may also impact other optoelectronic devices based on perovskite films

    Baichuan 2: Open Large-scale Language Models

    Full text link
    Large language models (LLMs) have demonstrated remarkable performance on a variety of natural language tasks based on just a few examples of natural language instructions, reducing the need for extensive feature engineering. However, most powerful LLMs are closed-source or limited in their capability for languages other than English. In this technical report, we present Baichuan 2, a series of large-scale multilingual language models containing 7 billion and 13 billion parameters, trained from scratch, on 2.6 trillion tokens. Baichuan 2 matches or outperforms other open-source models of similar size on public benchmarks like MMLU, CMMLU, GSM8K, and HumanEval. Furthermore, Baichuan 2 excels in vertical domains such as medicine and law. We will release all pre-training model checkpoints to benefit the research community in better understanding the training dynamics of Baichuan 2.Comment: Baichuan 2 technical report. Github: https://github.com/baichuan-inc/Baichuan

    Efficient Synthesis of Edit Functions for Opacity Enforcement Using Bisimulation-Based Abstractions

    No full text
    This paper investigates the synthesis of edit functions for opacity enforcement using abstraction methods to reduce computational complexity. Edit functions are used to alter system outputs by erasing or inserting events in order to prevent violations of opacity. We introduce two abstraction methods, called opaque observation equivalence and opaque bisimulation, that are used to abstract the original system and its observer before calculating edit functions. We present a set of results on abstraction for opacity and its enforcement by edit functions that prove that edit functions synthesized from abstracted models are “equivalent” to ones synthesized from original ones. Our approach leverages the technique of edit function synthesis using the All Edit Structure from prior works

    Compositional and Abstraction-Based Approach for Synthesis of Edit Functions for Opacity Enforcement

    No full text
    This article develops a novel compositional and abstraction-based approach to synthesize edit functions for opacity enforcement in modular discrete event systems. Edit functions alter the output of the system by erasing or inserting events in order to obfuscate the outside intruder, whose goal is to infer the secrets of the system from its observation. We synthesize edit functions to solve the opacity enforcement problem in a modular setting, which significantly reduces the computational complexity compared with the monolithic approach. Two abstraction methods called opaque observation equivalence and opaque bisimulation are first employed to abstract the individual components of the modular system and their observers. Subsequently, we propose a method to transform the synthesis of edit functions to the calculation of modular supremal nonblocking supervisors. We show that the edit functions synthesized in this manner correctly solve the opacity enforcement problem

    Opacity Enforcement Using Nondeterministic Publicly Known Edit Functions

    No full text

    Circular RNA circ-CD44 regulates chemotherapy resistance by targeting the miR-330-5p/ABCC1 axis in colorectal cancer cells

    No full text
    . Background. Colorectal cancer (CRC) is a common malignant tumor worldwide, ranking fourth for incidence. Recently, circular RNAs (circRNAs) have been demonstrated to play a key role in chemotherapy resistance to CRC treatment. Therefore, the role of circCD44 is investigated in CRC. Methods. The expression levels of circ-CD44, miR330-5p, and ATP binding cassette subfamily C member 1 (ABCC1) were quantified by real-time quantitative polymerase chain reaction (RT-qPCR) assay. The sensitivity of CRC cells to oxaliplatin (OXA) was assessed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl2H-tetrazol-3-ium bromide (MTT) assay. Colonyforming experiment was performed to measure the colony-forming ability of CRC cells. The apoptosis, migration, and invasion of CRC cells were determined by flow cytometry and transwell assays. A xenograft experiment was established to clarify the functional role of circ-CD44 silencing in vivo. The interactional relationship among circ-CD44, miR-330-5p, and ABCC1 was confirmed by dual-luciferase reporter and RNA immunoprecipitation assays. The protein expression of ABCC1 was quantified by western blot assay. Results. Circ-CD44 was obviously upregulated in OXA-resistant colorectal cancer tissues and cells. Lossof-function experiments revealed that inhibition of circCD44 suppressed proliferation, migration, and invasion while it increased OXA sensitivity and apoptosis in OXA-resistant colorectal cancer cells, which was overturned by suppression of miR-330-5p; besides, silencing of circ-CD44 also slowed the tumor growth in vivo. Additionally, overexpression of miR-330-5p inhibited chemotherapy resistance, proliferation, migration, and invasion while it induced apoptosis by targeting ABCC1. Conclusion. Mechanistically, circ-CD44 functioned as a miRNA sponge for miR-330-5p to upregulate the expression of ABCC1 and regulate chemotherapy resistance in CRC cell

    Highly luminescent, stable, transparent and flexible perovskite quantum dot gels towards light-emitting diodes

    No full text
    By controlling the hydrolysis of alkoxysilanes, highly luminescent, transparent and flexible perovskite quantum dot (QD) gels were synthesized. The gels could maintain the structure without shrinking and exhibited excellent stability comparing to the QDs in solution. This in situ fabrication can be easily scaled up for large-area/volume gels. The gels integrated the merits of the polymer matrices to avoid the non-uniformity of light output, making it convenient for practical LED applications. Monochrome and white LEDs were fabricated using these QD gels; the LEDs exhibited broader color gamut, demonstrating better property in the backlight display application
    • …
    corecore